Automatic vectorization of historical maps: A benchmark

Author:

Chen YiziORCID,Chazalon Joseph,Carlinet Edwin,Ôn Vũ Ngoc Minh,Mallet Clément,Perret JulienORCID

Abstract

Shape vectorization is a key stage of the digitization of large-scale historical maps, especially city maps that exhibit complex and valuable details. Having access to digitized buildings, building blocks, street networks and other geographic content opens numerous new approaches for historical studies such as change tracking, morphological analysis and density estimations. In the context of the digitization of Paris atlases created in the 19th and early 20th centuries, we have designed a supervised pipeline that reliably extract closed shapes from historical maps. This pipeline is based on a supervised edge filtering stage using deep filters, and a closed shape extraction stage using a watershed transform. It relies on probable multiple suboptimal methodological choices that hamper the vectorization performances in terms of accuracy and completeness. Objectively investigating which solutions are the most adequate among the numerous possibilities is comprehensively addressed in this paper. The following contributions are subsequently introduced: (i) we propose an improved training protocol for map digitization; (ii) we introduce a joint optimization of the edge detection and shape extraction stages; (iii) we compare the performance of state-of-the-art deep edge filters with topology-preserving loss functions, including vision transformers; (iv) we evaluate the end-to-end deep learnable watershed against Meyer watershed. We subsequently design the critical path for a fully automatic extraction of key elements of historical maps. All the data, code, benchmark results are freely available at https://github.com/soduco/Benchmark_historical_map_vectorization.

Funder

Agence Nationale de la Recherche

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3