Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference

Author:

Narayanan Ram PrasadhORCID,Khaleghi Ali,Veletić Mladen,Balasingham Ilangko

Abstract

This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.

Funder

Horizon 2020

Norges Forskningsråd

European Research Consortium for Informatics and Mathematics

NTNU Health - Seed Fund

Publisher

Public Library of Science (PLoS)

Reference72 articles.

1. Technology of deep brain stimulation: current status and future directions;JK Krauss;Nat Rev Neurol,2021

2. Status and challenges of electrical stimulation use in chronic wound healing;M Verdes;Curr Opin Biotechnol,2022

3. Gastric Electrical Stimulation: Role and Clinical Impact on Chronic Nausea and Vomiting;H Soliman;Front Neurosci,2022

4. Miniature battery-free bioelectronics;V Nair;Science (80-),2023

5. An Overview of Medical Implant Antennas;A Khaleghi;17th European Conference on Antennas and Propagation, EuCAP 2023,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3