Classification of large ornithopod dinosaur footprints using Xception transfer learning

Author:

Ha YeoncheolORCID,Kim Seung-SepORCID

Abstract

Large ornithopod dinosaur footprints have been confirmed on all continents except Antarctica since the 19th century. However, oversplitting problems in ichnotaxa have historically been observed in these footprints. To address these issues and distinguish between validated ichnotaxa, this study employed convolutional neural network-based Xception transfer learning to automatically classify ornithopod dinosaur tracks. The machine learning model was trained for 162 epochs (i.e., the number of full cycles of all training data through the model) using 274 data images, excluding horizontally flipped images. The trained model accuracy was 96.36%, and the validation accuracy was 92.59%. We demonstrate the performance of the machine learning model using footprint illustrations that are not included in the training dataset. These results show that the machine learning model developed in this study can properly classify footprint illustration data for large ornithopod dinosaurs. However, the quality of footprint illustration data (or images) inherently affects the performance of our machine learning model, which performs better on well-preserved footprints. In addition, because the developed machine-learning model is a typical supervised learning model, it is not possible to introduce a new label or class. Although this study used illustrations rather than photos or 3D data, it is the first application of machine-learning techniques at the academic level for verifying the ichnotaxonic assignments of large ornithopod dinosaur footprints. Furthermore, the machine learning model will likely aid researchers to classify the large ornithopod dinosaur footprint ichnotaxa, thereby safeguarding against the oversplitting problem.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Dinosaur footprints from the Cretaceous of South Korea: with reference to Cheollanam-do dinosaur sites;H Min;The Paleontological Communications Society of Korea,2004

2. A diverse dinosaur-bird footprint assemblage from the Lance Formation, Upper Cretaceous, eastern Wyoming: Implications for ichnotaxonomy;MG Lockley;Ichnos,2004

3. Ichnotaxonomic review of large ornithopod dinosaur tracks: Temporal and geographic implications;I Díaz-Martínez;PLOS ONE,2015

4. A review of large Cretaceous ornithopod tracks, with special reference to their ichnotaxonomy;MG Lockley;Biol J Linn Soc Lond,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Steps and New Challenges to the Brazilian Dinosaur Track Researches;Dinosaur Tracks of Mesozoic Basins in Brazil;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3