Experimental study and numerical analysis on axial compression of round-ended concrete filled CFRP-aluminum tube columns

Author:

Wang Mengjun,Tang Congrong,Qiu Qirong,Yu YongORCID

Abstract

To enhance the concrete confinement ability of circular-ended aluminum alloy tubes, carbon fiber reinforced polymer (CFRP) was bonded onto the tube surface to form CFRP confined concrete columns with circular ends (RCFCAT). Eight specimens were designed with number of CFRP layers and section aspect ratio as variables. Axial loading test and finite element analysis were carried out. Results showed CFRP delayed buckling of the aluminum alloy tube flat surfaces, transforming inclined shear buckling failure into CFRP fracture failure. Specimens with aspect ratio above 4 experienced instability failures. Under same cross-section, CFRP increased axial compression bearing capacity and ductility by up to 30.8% and 43.4% respectively. As aspect ratio increased, enhancement coefficients of bearing capacity and ductility gradually decreased, the aspect ratio is restrictive when it is less than 2.5. CFRP strengthening increased initial axial compression stiffness of specimens by up to 117.9%. The stiffness decreased gradually with increasing aspect ratio, with most significant increase at aspect ratio of 4. Strain analysis showed CFRP bonding remarkably reduced circumferential and longitudinal strains. Confinement effect was optimal at aspect ratio around 2.0. The rationality of the refined FE model established has been verified in terms of load displacement curves, capturing circular aluminum tube oblique shear buckling, concrete "V" shaped crushing, and CFRP tearing during specimen failure. The parameter analysis showed that increasing the number of CFRP layers is one of the most effective methods for improving the ultimate bearing capacity of RCFCAT.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. Seismic behavior and modeling of high-strength composite concrete filled steel tube (CFT) beam-columns;AH Varma;Journal of Constructional Steel Research,2002

2. Cyclic behaviour and design of cold-formed round-ended concrete-filled steel tube columns;QH Shen;Journal of Constructional Steel Research,2022

3. Eccentric compression performance of round-ended CFST slender columns with different aspect ratios;R Wang;Journal of Constructional Steel Research,2023

4. Axial compressive behaviour and confinement effect of round-ended rectangular CFST with different central angles;ZG Ren;Composite Structures,2022

5. Mechanical performances of concrete-filled steel tubular stub columns with round ends under axial loading;FX Ding;Thin-Walled Structures,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3