Interference with mitochondrial metabolism could serve as a potential therapeutic strategy for advanced prostate cancer

Author:

Wu Chuang,Zhu Huihuang,Zhang Yang,Ding Li,Wang JunqiORCID

Abstract

Metabolic reprogramming has been defined as a hallmark of malignancies. Prior studies have focused on the single nucleotide polymorphism (SNP) of POLG2 gene, which is reportedly responsible for encoding mitochondrial DNA genes and is implicated in the material and energy metabolism of tumor cells, whereas its function in prostate cancer has been elusive. Gene expression profile matrix and clinical information were downloaded from TCGA (The Cancer Genome Atlas) data portal, and GSE3325 and GSE8511 were retrieved from GEO (Gene Expression Omnibus) database. We conducted analysis of the relative expression of POLG2, clinical characterization, survival analysis, GO / KEGG and GSEA (Gene Set Enrichment Analysis) enrichment analysis in R and employed STRING portal to acquaint ourselves with the protein-protein interaction (PPI). IHC (Immunohistochemical) profiles of POLG2 protein between normal and cancerous tissues were consulted via HPA (Human protein atlas) database and the immunohistochemical POLG2 were verified between para-cancerous and cancerous tissues in tissue array. At the cellular level, Mitochondrial dysfunction assay, DNA synthesis test, wound healing assay, and invasion assay were implemented to further validate the phenotype of POLG2 knockdown in PCa cell lines. RT-qPCR and western blotting were routinely adopted to verify variations of molecular expression within epithelial mesenchymal transition (EMT). Results showed that POLG2 was over-expressed in most cancer types, and the over-expression of POLG2 was correlated with PCa progression and suggested poor OS (Overall Survival) and PFI (Progress Free Interval). Multivariate analysis showed that POLG2 might be an independent prognostic factor of prostate cancer. We also performed GO/KEGG, GSEA analysis, co-expression genes, and PPI, and observed the metabolism-related gene alterations in PCa. Furthermore, we verified that POLG2 knockdown had an inhibitory effect on mitochondrial function, proliferation, cell motility, and invasion, we affirmed POLG2 could affect the prognosis of advanced prostate cancer via EMT. In summary, our findings indicate that over-expressed POLG2 renders poor prognosis in advanced prostate cancer. This disadvantageous factor can serve as a potential indicator, making it possible to target mitochondrial metabolism to treat advanced prostate cancer.

Funder

Graduate Research and Innovation Projects of Jiangsu Province

Xuzhou Medical University Leading Talent Training Project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3