Detection method of organic light-emitting diodes based on small sample deep learning

Author:

Qiu Hua,Huang JinORCID,Feng Yi-Cong,Rong Peng

Abstract

In order to solve the surface detection problems of low accuracy, low precision and inability to automate in the production process of late-model display panels, a little sample-based deep learning organic light-emitting diodes detection model SmartMuraDetection is proposed. First, aiming at the detection difficulty of low surface defect contrast, a gradient boundary enhancement algorithm module is designed to automatically identify and enhance defects and background gray difference. Then, the problem of insufficient little sample data sets is solved, Poisson fusion image enhancement module is designed for sample enhancement. Then, a TinyDetection model adapted to small-scale target detection is constructed to improve the detection accuracy of defects in small-scale targets. Finally, SEMUMaxMin quantization module is proposed as a post-processing module for the result images derived from network model reasoning, and accurate defect data is obtained by setting a threshold filter. The number of sample images in the experiment is 334. This study utilizes an organic light-emitting diodes detection model. The detection accuracy of surface defects can be improved by 85% compared with the traditional algorithm. The method in this paper is used for mass production evaluation in the actual display panel production site. The detection accuracy of surface defects reaches 96%, which can meet the mass production level of the detection equipment in this process section.

Funder

Natural Resources Scientific Research Project of Sichuan Province

2022 annual science and technology project of the National Archives Administration

Publisher

Public Library of Science (PLoS)

Reference54 articles.

1. comparison and new progress of display technology [j].;JJ Li;liquid crystal and display,2018

2. on the progress of OLED display technology [j].;xl Xue;science and Technology & innovation,2019

3. analysis of mura defects and measurement methods of LCD [j].;P Zhang;electronic testing,2017

4. Mao fq. research and application of TFT LCD defect visual recognition algorithm based on small samples [d][master’s thesis]. Huazhong University of science and technology, Wuhan, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3