Adversarial AI applied to cross-user inter-domain and intra-domain adaptation in human activity recognition using wireless signals

Author:

Hassan Muhammad,Kelsey TomORCID,Rahman FahrurroziORCID

Abstract

In recent years, researchers have successfully recognised human activities using commercially available WiFi (Wireless Fidelity) devices. The channel state information (CSI) can be gathered at the access point with the help of a network interface controller (NIC card). These CSI streams are sensitive to human body motions and produce abrupt changes (fluctuations) in their magnitude and phase values when a moving object interacts with a transmitter and receiver pair. This sensing methodology is gaining popularity compared to traditional approaches involving wearable technology, as it is a contactless sensing strategy with no cumbersome sensing equipments fitted on the target with preserved privacy since no personal information of the subject is collected. In previous investigations, internal validation statistics have been promising. However, external validation results have been poor, due to model application to varying subjects with remarkably different environments. To address this problem, we propose an adversarial Artificial Intelligence AI model that learns and utilises domain-invariant features. We analyse model results in terms of suitability for inter-domain and intra-domain alignment techniques, to identify which is better at robustly matching the source to target domain, and hence improve recognition accuracy in cross-user conditions for HAR using wireless signals. We evaluate our model performance on different target training data percentages to assess model reliability on data scarcity. After extensive evaluation, our architecture shows improved predictive performance across target training data proportions when compared to a non-adversarial model for nine cross-user conditions with comparatively less simulation time. We conclude that inter-domain alignment is preferable for HAR applications using wireless signals, and confirm that the dataset used is suitable for investigations of this type. Our architecture can form the basis of future studies using other datasets and/or investigating combined cross-environmental and cross-user features.

Publisher

Public Library of Science (PLoS)

Reference45 articles.

1. https://www.techtarget.com/searchmobilecomputing/definition/MIMO

2. https://www.electronics-notes.com/articles/radio/multicarrier-modulation/ofdm-orthogonal-frequency-division-multiplexing-what-is-tutorial-basics.php

3. A survey on behavior recognition using wifi channel state information;S. Yousefi;IEEE Communications Magazine,2017

4. Pushing the limits of long range wireless sensing with lora;B. Xie;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2021

5. Transfer learning for human activity recognition using representational analysis of neural network;S. An;ACM Transactions on Computing for Healthcare,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3