Comparative analysis and FPGA realization of different control synchronization approaches for chaos-based secured communication systems

Author:

Bonny TalalORCID,Al Nassan Wafaa,Sambas AcengORCID

Abstract

Synchronization of the chaotic systems has attracted much attention in recent years due to its vital applications in secured communication systems. In this paper, an implementation and comparative analysis of two different control approaches for synchronization between two identical four-dimensional hyperchaotic systems is presented. The two control approaches are the Adaptive nonlinear controller and the linear optimal quadratic regulator LQR. To demonstrate the effectiveness of each controller, the numerical simulation is presented using Matlab/Simulink and the control law is derived. The performance of the proposed controllers is compared based on four factors; response time, squared error integration, energy applied from the controller, and cost function. To measure the robustness of the control approaches, the performance factors are compared when there is a change in system parameters and a variation in the initial conditions. Then the proposed synchronization methods are implemented on the FPGA platform to demonstrate the utilized resources on Field Programmable Gate Array (FPGA) hardware platform and the operation speed. Finally, to generalize the results of the comparison, the study is implemented for the synchronization of another secured communication system consisting of two identical three-dimensional chaotic. The experimental results show that the LQR method is more effective than the Adaptive controller based on the performance factors we propose. Moreover, the LQR is much simpler to implement on hardware and requires fewer resources on the FPGA.

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. The chaotic mobile robot;Yoshihiko Nakamura;IEEE Transactions on Robotics and Automation,2001

2. A chaotic coverage path planner for the mobile robot based on the chebyshev map for special missions;Cai-hong Li;Frontiers of Information Technology & Electronic Engineering,2017

3. A speech cryptosystem using the new chaotic system with a capsule-shaped equilibrium curve;Talal Bonny Mohamad Afendee Mohamed;Computers, Materials & Continua

4. Clock glitch fault injection attack on an fpga-based non-autonomous chaotic oscillator;Talal Bonny;Nonlinear Dynamics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3