Evaluating the cost of simplicity in score building: An example from alcohol research

Author:

Rousson Valentin,Trächsel BastienORCID,Iglesias Katia,Baggio StéphanieORCID

Abstract

Building a score from a questionnaire to predict a binary gold standard is a common research question in psychology and health sciences. When building this score, researchers may have to choose between statistical performance and simplicity. A practical question is to what extent it is worth sacrificing the former to improve the latter. We investigated this research question using real data, in which the aim was to predict an alcohol use disorder (AUD) diagnosis from 20 self-reported binary questions in young Swiss men (n = 233, mean age = 26). We compared the statistical performance using the area under the ROC curve (AUC) of (a) a “refined score” obtained by logistic regression and several simplified versions of it (“simple scores”): with (b) 3, (c) 2, and (d) 1 digit(s), and (e) a “sum score” that did not allow negative coefficients. We used four estimation methods: (a) maximum likelihood, (b) backward selection, (c) LASSO, and (d) ridge penalty. We also used bootstrap procedures to correct for optimism. Simple scores, especially sum scores, performed almost identically or even slightly better than the refined score (respective ranges of corrected AUCs for refined and sum scores: 0.828–0.848, 0.835–0.850), with the best performance been achieved by LASSO. Our example data demonstrated that simplifying a score to predict a binary outcome does not necessarily imply a major loss in statistical performance, while it may improve its implementation, interpretation, and acceptability. Our study thus provides further empirical evidence of the potential benefits of using sum scores in psychology and health sciences.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Measurement in Medicine

2. A model and its fit lie in the eye of the beholder: Long live the sum score.;PA Edelsbrunner;Frontiers in Psychology.,2022

3. Understanding and using factor scores: Considerations for the applied researcher.;C DiStefano;Practical Assessment, Research & Evaluation.,2009

4. A comparison of regression and loading weights for the computation of factor scores.;JW Grice;Multivariate Behavioral Research,1998

5. Simple component analysis. Journal of the Royal Statistical Society;V Rousson;Series C (Applied Statistics),2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3