Perifascial areolar tissue graft promotes angiogenesis and wound healing in an exposed ischemic component rabbit model

Author:

Miyanaga ToruORCID,Yoshitomi Yasuo,Miyanaga Aiko

Abstract

Multiple studies have reported the use of perifascial areolar tissue (PAT) grafts to treat wounds involving exposed ischemic tissues, avascular structures, and defective membrane structures. Our objective was to assess the quantitative effects of PAT grafts and their suitability for wounds with ischemic tissue exposure and to qualitatively determine the factors through which PAT promotes wound healing and repair. We conducted histological, immunohistochemical, and mass spectrometric analyses of the PAT grafts. PAT grafts contain numerous CD34+ progenitor/stem cells, extracellular matrix, growth factors, and cytokines that promote wound healing and angiogenesis. Furthermore, we established a male rabbit model to compare the efficacy of PAT grafting with that of an occlusive dressing treatment (control) for wounds with cartilage exposure. PAT grafts could cover ischemic components with granulation tissue and promote angiogenesis. Macroscopic and histological observations of the PAT graft on postoperative day seven revealed capillaries bridging the ischemic tissue (vascular bridging). Additionally, the PAT graft suppressed wound contraction and alpha smooth muscle actin (αSMA) levels and promoted epithelialization. These findings suggested that PAT can serve as a platform to enhance wound healing and promote angiogenesis. This is the first study to quantify the therapeutic efficacy of PAT grafts, revealing their high value for the treatment of wounds involving exposed ischemic structures. The effectiveness of PAT grafts can be attributed to two primary factors: vascular bridging and the provision of three essential elements (progenitor/stem cells, extracellular matrix molecules, and growth factors/cytokines). Moreover, PAT grafts may be used as transplant materials to mitigate excessive wound contraction and the development of hypertrophic scarring.

Funder

Japan Society for the Promotion of Science

SBC Research Support Grant

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3