Quantifying the ecological carrying capacity of grasslands in Inner Mongolia

Author:

Guo CaiyunORCID,Song Shuyu,Zhao Dongsheng,Luo Shilin,Yang Lingchun,Xie Gege

Abstract

Quantifying the ecological carrying capacity has emerged as a crucial factor for maintaining ecosystem stability for sustainable development in vulnerable eco-regions. Here, we propose a new framework for ecological carrying capacity quantification suitable for vulnerable eco-regions. We applied this framework to calculate the ecological carrying capacity of Inner Mongolia from 1987–2015 and used a geographical detector to identify the driving factors behind spatial heterogeneity. Our results revealed the following. (1) The above-ground net primary production (ANPP) required to support the ecosystem service of soil conservation (ANPPSC) decreased from northeast to southwest, whereas the distribution pattern of ANPP required to support the ecosystem service of sand fixation (ANPPSF) exhibited a contrary trend. The average annual ANPP required to support the ecosystem service of natural regeneration (ANPPNR) in Inner Mongolia from 1987 to 2015 was 101.27 gCm-2year-1, revealing a similar spatial distribution with ANPP. (2) The total ecological carrying capacity of Inner Mongolian grassland was 78.52 million sheep unit hm-2. The regions with insufficient provisioning service capability accounted for 4.18% of the total area, primarily concentrated in the east and northwest. (3) The average optimal livestock number for grasslands in Inner Mongolia was 1.59 sheep unit hm-2 from 1987–2015, ranging from 0.77 to 1.69 sheep unit hm-2 across different zones. The average ecological carrying capacity of the cold temperate humid, medium-temperate arid, and warm temperate semi-humid regions was less than 1.08 sheep unit m-2, suggesting a need to prohibit grazing in these areas. (4) The primary influencing factors affecting ecological carrying capacity distribution were normalized difference vegetation index (NDVI), precipitation, and soil type. The framework developed herein can help identify sustainable development potential from the ecosystem service perspective and effectively contribute to decision-making in grassland ecosystem management.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Carbon and water fluxes in ecologically vulnerable areas in China;ZM Hu;Journal of Plant Ecology,2022

2. Impermanent changes investigation of shape factors of the volumetric balance model for water development in surface irrigation;K Ostad-Ali-Askari;Modeling Earth Systems and Environment,2020

3. Laboratory investigation on erosion threshold shear stress of cohesive sediment in Karkheh Dam.;RF Nafchi;Environ Earth Sci,2021

4. Ecological Protection and Livelihood Improvement in Ecologically Vulnerable Regions.;L Zhen;Journal of Resources and Ecology,2022

5. Pilot analysis of global ecosystems: Grassland ecosystems.;RP White;World Resources Institute,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3