Comparing methods to classify admitted patients with SARS-CoV-2 as admitted for COVID-19 versus with incidental SARS-CoV-2: A cohort study

Author:

Hohl Corinne M.ORCID,Cragg Amber,Purssel Elizabeth,McAlister Finlay A.ORCID,Ting Daniel K.,Scheuermeyer Frank,Stachura Maja,Grant Lars,Taylor JohnORCID,Kanu Josephine,Hau Jeffrey P.,Cheng IvyORCID,Atzema Clare L.,Bola RajanORCID,Morrison Laurie J.ORCID,Landes Megan,Perry Jeffrey J.,Rosychuk Rhonda J., ,

Abstract

Introduction Not all patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop symptomatic coronavirus disease 2019 (COVID-19), making it challenging to assess the burden of COVID-19-related hospitalizations and mortality. We aimed to determine the proportion, resource utilization, and outcomes of SARS-CoV-2 positive patients admitted for COVID-19, and assess the impact of using the Center for Disease Control’s (CDC) discharge diagnosis-based algorithm and the Massachusetts state department’s drug administration-based classification system on identifying admissions for COVID-19. Methods In this retrospective cohort study, we enrolled consecutive SARS-CoV-2 positive patients admitted to one of five hospitals in British Columbia between December 19, 2021 and May 31,2022. We completed medical record reviews, and classified hospitalizations as being primarily for COVID-19 or with incidental SARS-CoV-2 infection. We applied the CDC algorithm and the Massachusetts classification to estimate the difference in hospital days, intensive care unit (ICU) days and in-hospital mortality and calculated sensitivity and specificity. Results Of 42,505 Emergency Department patients, 1,651 were admitted and tested positive for SARS-CoV-2, with 858 (52.0%, 95% CI 49.6–54.4) admitted for COVID-19. Patients hospitalized for COVID-19 required ICU admission (14.0% versus 8.2%, p<0.001) and died (12.6% versus 6.4%, p<0.001) more frequently compared with patients with incidental SARS-CoV-2. Compared to case classification by clinicians, the CDC algorithm had a sensitivity of 82.9% (711/858, 95% CI 80.3%, 85.4%) and specificity of 98.1% (778/793, 95% CI 97.2%, 99.1%) for COVID-19-related admissions and underestimated COVID-19 attributable hospital days. The Massachusetts classification had a sensitivity of 60.5% (519/858, 95% CI 57.2%, 63.8%) and specificity of 78.6% (623/793, 95% CI 75.7%, 81.4%) for COVID-19-related admissions, underestimating total number of hospital and ICU bed days while overestimating COVID-19-related intubations, ICU admissions, and deaths. Conclusion Half of SARS-CoV-2 hospitalizations were for COVID-19 during the Omicron wave. The CDC algorithm was more specific and sensitive than the Massachusetts classification, but underestimated the burden of COVID-19 admissions. Trial registration Clinicaltrials.gov, NCT04702945.

Funder

Canadian Institutes of Health Research

Ontario Ministry of Colleges and Universities

Saskatchewan Health Research Foundation

Genome British Columbia

Fondation du CHU de Québec

Public Health Agency of Canada

British Columbia Academic Health Science Network

Biotalent Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3