Prediction of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer by using a deep learning model with 18F-FDG PET/CT

Author:

Bulut GülcanORCID,Atilgan Hasan Ikbal,Çınarer Gökalp,Kılıç Kazım,Yıkar Deniz,Parlar Tuba

Abstract

Objectives The aim of the study is 18F-FDG PET/CT imaging by using deep learning method are predictive for pathological complete response pCR after Neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC). Introduction NAC is the standard treatment for locally advanced breast cancer (LABC). Pathological complete response (pCR) after NAC is considered a good predictor of disease-free survival (DFS) and overall survival (OS).Therefore, there is a need to develop methods that can predict the pCR at the time of diagnosis. Methods This article was designed as a retrospective chart study.For the convolutional neural network model, a total of 355 PET/CT images of 31 patients were used. All patients had primary breast surgery after completing NAC. Results Pathological complete response was obtained in a total of 9 patients. The study results show that our proposed deep convolutional neural networks model achieved a remarkable success with an accuracy of 84.79% to predict pathological complete response. Conclusion It was concluded that deep learning methods can predict breast cancer treatment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3