Inhibition of β-lactamase function by de novo designed peptide

Author:

Mishra ArunimaORCID,Cosic Irena,Loncarevic Ivan,Cosic Drasko,Fletcher Hansel M.

Abstract

Antimicrobial resistance is a great public health concern that is now described as a “silent pandemic”. The global burden of antimicrobial resistance requires new antibacterial treatments, especially for the most challenging multidrug-resistant bacteria. There are various mechanisms by which bacteria develop antimicrobial resistance including expression of β-lactamase enzymes, overexpression of efflux pumps, reduced cell permeability through downregulation of porins required for β-lactam entry, or modifications in penicillin-binding proteins. Inactivation of the β-lactam antibiotics by β-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Although several effective small-molecule inhibitors of β-lactamases such as clavulanic acid and avibactam are clinically available, they act only on selected class A, C, and some class D enzymes. Currently, none of the clinically approved inhibitors can effectively inhibit Class B metallo-β-lactamases. Additionally, there is increased resistance to these inhibitors reported in several bacteria. The objective of this study is to use the Resonant Recognition Model (RRM), as a novel strategy to inhibit/modulate specific antimicrobial resistance targets. The RRM is a bio-physical approach that analyzes the distribution of energies of free electrons and posits that there is a significant correlation between the spectra of this energy distribution and related protein biological activity. In this study, we have used the RRM concept to evaluate the structure-function properties of a group of 22 β-lactamase proteins and designed 30-mer peptides with the desired RRM spectral periodicities (frequencies) to function as β-lactamase inhibitors. In contrast to the controls, our results indicate 100% inhibition of the class A β-lactamases from Escherichia coli and Enterobacter cloacae. Taken together, the RRM model can likely be utilized as a promising approach to design β-lactamase inhibitors for any specific class. This may open a new direction to combat antimicrobial resistance.

Funder

National Institute of Dental and Craniofacial Research

QuantBioRes-QBR A/S

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae;A. Fleming;British journal of experimental pathology,1929

2. Antibiotics and bacterial resistance in the 21st century;RJ Fair;Perspect Medicin Chem,2014

3. The future of antibiotics;B. Spellberg;Crit Care,2014

4. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015;EY Klein;Proc Natl Acad Sci U S A,2018

5. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century;CL Tooke;J Mol Biol,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3