The utility of a Bayesian predictive model to forecast neuroinvasive West Nile virus disease in the United States of America, 2022

Author:

McCarter Maggie S. J.ORCID,Self Stella,Dye-Braumuller Kyndall C.,Lee Christopher,Li Huixuan,Nolan Melissa S.ORCID

Abstract

Arboviruses (arthropod-borne-viruses) are an emerging global health threat that are rapidly spreading as climate change, international business transport, and landscape fragmentation impact local ecologies. Since its initial detection in 1999, West Nile virus has shifted from being a novel to an established arbovirus in the United States of America. Subsequently, more than 25,000 cases of West Nile neuro-invasive disease have been diagnosed, cementing West Nile virus as an arbovirus of public health importance. Given its novelty in the United States of America, high-risk ecologies are largely underdefined making targeted population-level public health interventions challenging. Using the Centers for Disease Control and Prevention ArboNET neuroinvasive West Nile virus data from 2000–2021, this study aimed to predict neuroinvasive West Nile virus human cases at the county level for the contiguous USA using a spatio-temporal Bayesian negative binomial regression model. The model includes environmental, climatic, and demographic factors, as well as the distribution of host species. An integrated nested Laplace approximation approach was used to fit our model. To assess model prediction accuracy, annual counts were withheld, forecasted, and compared to observed values. The validated models were then fit to the entire dataset for 2022 predictions. This proof-of-concept mathematical, geospatial modelling approach has proven utility for national health agencies seeking to allocate funding and other resources for local vector control agencies tackling West Nile virus and other notifiable arboviral agents.

Funder

Centers for Disease Control and Prevention

South Carolina Research Foundation, University of South Carolina

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3