Abstract
Arboviruses (arthropod-borne-viruses) are an emerging global health threat that are rapidly spreading as climate change, international business transport, and landscape fragmentation impact local ecologies. Since its initial detection in 1999, West Nile virus has shifted from being a novel to an established arbovirus in the United States of America. Subsequently, more than 25,000 cases of West Nile neuro-invasive disease have been diagnosed, cementing West Nile virus as an arbovirus of public health importance. Given its novelty in the United States of America, high-risk ecologies are largely underdefined making targeted population-level public health interventions challenging. Using the Centers for Disease Control and Prevention ArboNET neuroinvasive West Nile virus data from 2000–2021, this study aimed to predict neuroinvasive West Nile virus human cases at the county level for the contiguous USA using a spatio-temporal Bayesian negative binomial regression model. The model includes environmental, climatic, and demographic factors, as well as the distribution of host species. An integrated nested Laplace approximation approach was used to fit our model. To assess model prediction accuracy, annual counts were withheld, forecasted, and compared to observed values. The validated models were then fit to the entire dataset for 2022 predictions. This proof-of-concept mathematical, geospatial modelling approach has proven utility for national health agencies seeking to allocate funding and other resources for local vector control agencies tackling West Nile virus and other notifiable arboviral agents.
Funder
Centers for Disease Control and Prevention
South Carolina Research Foundation, University of South Carolina
Publisher
Public Library of Science (PLoS)