Gas concentration mapping and source localization for environmental monitoring through unmanned aerial systems using model-free reinforcement learning agents

Author:

Husnain Anees ul,Mokhtar NorrimaORCID,Mohamed Shah Noraisyah Binti,Dahari Mahidzal Bin,Azmi Amirul Asyhraff,Iwahashi Masahiro

Abstract

There are three primary objectives of this work; first: to establish a gas concentration map; second: to estimate the point of emission of the gas; and third: to generate a path from any location to the point of emission for UAVs or UGVs. A mountable array of MOX sensors was developed so that the angles and distances among the sensors, alongside sensors data, were utilized to identify the influx of gas plumes. Gas dispersion experiments under indoor conditions were conducted to train machine learning algorithms to collect data at numerous locations and angles. Taguchi’s orthogonal arrays for experiment design were used to identify the gas dispersion locations. For the second objective, the data collected after pre-processing was used to train an off-policy, model-free reinforcement learning agent with a Q-learning policy. After finishing the training from the training data set, Q-learning produces a table called the Q-table. The Q-table contains state-action pairs that generate an autonomous path from any point to the source from the testing dataset. The entire process is carried out in an obstacle-free environment, and the whole scheme is designed to be conducted in three modes: search, track, and localize. The hyperparameter combinations of the RL agent were evaluated through trial-and-error technique and it was found that ε = 0.9, γ = 0.9 and α = 0.9 was the fastest path generating combination that took 1258.88 seconds for training and 6.2 milliseconds for path generation. Out of 31 unseen scenarios, the trained RL agent generated successful paths for all the 31 scenarios, however, the UAV was able to reach successfully on the gas source in 23 scenarios, producing a success rate of 74.19%. The results paved the way for using reinforcement learning techniques to be used as autonomous path generation of unmanned systems alongside the need to explore and improve the accuracy of the reported results as future works.

Funder

Institute of Research Management and Services, University of Malaya

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. US-EPA. Overview of Greenhouse Gases: EPA; 2020 [cited 2023 November]. Available from: https://www.epa.gov/ghgemissions/overview-greenhouse-gases.

2. GADEN: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments;J Monroy;Sensors (Switzerland),2017

3. Environmental chemical sensing using small drones: A review;J Burgués;Science of the Total Environment: Elsevier B.V.,2020

4. Active Localization of Gas Leaks Using Fluid Simulation;M Asenov;IEEE Robotics and Automation Letters,2019

5. Robotic Information Gathering With Reinforcement Learning Assisted by Domain Knowledge: An Application to Gas Source Localization;T Wiedemann;IEEE Access,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3