Proteomics reveals differentially regulated pathways when comparing grade 2 and 4 astrocytomas

Author:

Verissimo Denildo C. A.,Camillo-Andrade Amanda C.,Santos Marlon D. M.,Sprengel Sergio L.,Zanine Simone C.,Borba Luis A. B.,Carvalho Paulo C.,da G. Fischer Juliana de S.ORCID

Abstract

Astrocytic tumors are known for their high progression capacity and high mortality rates; in this regard, proteins correlated to prognosis can aid medical conduct. Although several genetic changes related to progression from grade 2 to grade 4 astrocytoma are already known, mRNA copies do not necessarily correlate with protein abundance and therefore could shadow further comprehension about this tumor’s biology. This motivates us to seek for complementary strategies to study tumor progression at the protein level. Here we compare the proteomic profile of biopsies from patients with grade 2 (diffuse, n = 6) versus grade 4 astrocytomas (glioblastomas, n = 10) using shotgun proteomics. Data analysis performed with PatternLab for proteomics identified 5,206 and 6,004 proteins in the 2- and 4-grade groups, respectively. Our results revealed seventy-four differentially abundant proteins (p < 0.01); we then shortlist those related to greater malignancy. We also describe molecular pathways distinctly activated in the two groups, such as differences in the organization of the extracellular matrix, decisive both in tumor invasiveness and in signaling for cell division, which, together with marked contrasts in energy metabolism, are determining factors in the speed of growth and dissemination of these neoplasms. The degradation pathways of GABA, enriched in the grade 2 group, is consistent with a favorable prognosis. Other functions such as platelet degranulation, apoptosis, and activation of the MAPK pathway were correlated to grade 4 tumors and, consequently, unfavorable prognoses. Our results provide an important survey of molecular pathways involved in glioma pathogenesis for these histopathological groups.

Funder

Fundação Oswaldo Cruz

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference83 articles.

1. Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults;TP Diwanji;Adolesc Health Med Ther,2017

2. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary;DN Louis;Acta Neuropathol (Berl),2016

3. Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis;K Gollapalli;Omics J Integr Biol,2017

4. Genetic alterations and signaling pathways in the evolution of gliomas;H Ohgaki;Cancer Sci,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3