A normalization model for repeated letters in social media hate speech text based on rules and spelling correction

Author:

Mansur Zainab,Omar NazliaORCID,Tiun Sabrina,Alshari Eissa M.

Abstract

As social media booms, abusive online practices such as hate speech have unfortunately increased as well. As letters are often repeated in words used to construct social media messages, these types of words should be eliminated or reduced in number to enhance the efficacy of hate speech detection. Although multiple models have attempted to normalize out-of-vocabulary (OOV) words with repeated letters, they often fail to determine whether the in-vocabulary (IV) replacement words are correct or incorrect. Therefore, this study developed an improved model for normalizing OOV words with repeated letters by replacing them with correct in-vocabulary (IV) replacement words. The improved normalization model is an unsupervised method that does not require the use of a special dictionary or annotated data. It combines rule-based patterns of words with repeated letters and the SymSpell spelling correction algorithm to remove repeated letters within the words by multiple rules regarding the position of repeated letters in a word, be it at the beginning, middle, or end of the word and the repetition pattern. Two hate speech datasets were then used to assess performance. The proposed normalization model was able to decrease the percentage of OOV words to 8%. Its F1 score was also 9% and 13% higher than the models proposed by two extant studies. Therefore, the proposed normalization model performed better than the benchmark studies in replacing OOV words with the correct IV replacement and improved the performance of the detection model. As such, suitable rule-based patterns can be combined with spelling correction to develop a text normalization model to correctly replace words with repeated letters, which would, in turn, improve hate speech detection in texts.

Funder

Ministry of Higher Education and Scientific Research

Publisher

Public Library of Science (PLoS)

Reference62 articles.

1. One-step and two-step classification for abusive language detection on twitter;JH Park;arXiv preprint arXiv,2017

2. An in-depth analysis of the effect of text normalization in social media. NAACL HLT 2015–2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies;T. Baldwin;Proceedings of the Conference,2015

3. Offline events and online hate;Y Lupu;PLoS one,2023

4. Detecting the hate code on social media;R Magu;InProceedings of the International AAAI Conference on Web and Social Media,2017

5. A measurement study of hate speech in social media;M Mondal;InProceedings of the 28th ACM conference on hypertext and social media,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3