A novel metric to improve mismatched primer selection and quantification accuracy in amplifying DNA repeats for quantitative polymerase chain reactions

Author:

Xu Eugenia Y.ORCID,Schneper Lisa M.,Notterman Daniel A.

Abstract

In quantitative polymerase chain reaction (qPCR) experiments, primers containing mismatches with respect to the template are widely used in measuring repetitive DNA elements. Primer-template mismatches may lead to underestimation of the input sample quantity due to inefficient annealing and amplification. But how primer-template mismatches affect quantification accuracy has not been rigorously investigated. In this study, we performed a series of qPCR experiments in which we tested three pairs of mismatched telomere primers (tel1/tel2, tel1b/tel2b and telg/telc) and two pairs of perfect-match reference gene primers (36B4-F/-R and IFNB1-F/-R) at three different primer concentrations under four cycling conditions. Templates used were genomic DNA from two human cell lines and oligo duplexes which contained telomere sequences, reference gene sequences, or both. We demonstrated that the underestimation of input sample quantity from reactions containing mismatched primers was not due to lower amplification efficiency (E), but due to ineffective usage of the input sample. We defined a novel concept of amplification efficacy (f) which quantifies the effectiveness of input sample amplification by primers. We have modified the conventional qPCR kinetic formula to include f, which corrects the effects of primer mismatches. We demonstrated that reactions containing mismatched telomere primer pairs had similar efficiency (E), but varying degrees of reduced efficacy (f) in comparison to those with the perfect-match gene primer pairs. Using the quantitative parameter f, underestimation of initial target by telomere primers can be adjusted to provide a more accurate measurement. Additionally, we found that the tel1b/tel2b primer set at concentration of 500 nM and 900 nM exhibited the best amplification efficacy f. This study provides a novel way to incorporate an evaluation of amplification efficacy into qPCR analysis. In turn, it improves mismatched primer selection and quantification accuracy in amplifying DNA repeats using qPCR methods.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

the Center for Health and Wellbeing of Princeton University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3