Aquaporin splice variation differentially modulates channel function during marine teleost egg hydration

Author:

Ferré Alba,Chauvigné François,Zapater CintaORCID,Finn Roderick Nigel,Cerdà JoanORCID

Abstract

Aquaporin-mediated oocyte hydration is a developmentally regulated adaptive mechanism that co-occurs with meiosis resumption in marine teleosts. It provides the early embryos with vital water until osmoregulatory systems develop, and in the majority of marine teleosts causes their eggs to float. Recent studies have shown that the subdomains of two water channels (Aqp1ab1 and Aqp1ab2) encoded in a teleost-specific aquaporin-1 cluster (TSA1C) co-evolved with duplicated Ywhaz-like (14-3-3ζ-like) binding proteins to differentially control their membrane trafficking for maximal egg hydration. Here, we report that in species that encode the full TSA1C, in-frame intronic splice variants of Aqp1ab1 result in truncated proteins that cause dominant-negative inhibition of the canonical channel trafficking to the plasma membrane. The inhibition likely occurs through hetero-oligomerization and retention in the endoplasmic reticulum (ER) and ultimate degradation. Conversely, in species that only encode the Aqp1ab2 channel we found an in-frame intronic splice variant that results in an intact protein with an extended extracellular loop E, and an out-of frame intronic splice variant with exon readthrough that results in a truncated protein. Both isoforms cause dominant-negative enhancement of the degradation pathway. However, the extended and truncated Aqp1ab2-type variants can also partially escape from the ER to reach the oocyte plasma membrane, where they dominantly-negatively inhibit water flux. The ovarian follicular expression ratios of the Aqp1ab2 isoforms in relation to the canonical channel are lowest during oocyte hydration, but subsequently highest when the canonical channel is recycled, thus leaving the eggs endowed with >90% water. These findings suggest that the expression of inhibitory isoforms of Aqp1ab1 and Aqp1ab2 may represent a new regulatory mechanism through which the cell-surface expression and the activity of the canonical channels can be physiologically modulated during oocyte hydration in marine teleosts.

Funder

Agencia Estatal de Investigación

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3