Indexing and partitioning the spatial linear model for large data sets

Author:

Ver Hoef Jay M.ORCID,Dumelle MichaelORCID,Higham Matt,Peterson Erin E.,Isaak Daniel J.

Abstract

We consider four main goals when fitting spatial linear models: 1) estimating covariance parameters, 2) estimating fixed effects, 3) kriging (making point predictions), and 4) block-kriging (predicting the average value over a region). Each of these goals can present different challenges when analyzing large spatial data sets. Current research uses a variety of methods, including spatial basis functions (reduced rank), covariance tapering, etc, to achieve these goals. However, spatial indexing, which is very similar to composite likelihood, offers some advantages. We develop a simple framework for all four goals listed above by using indexing to create a block covariance structure and nearest-neighbor predictions while maintaining a coherent linear model. We show exact inference for fixed effects under this block covariance construction. Spatial indexing is very fast, and simulations are used to validate methods and compare to another popular method. We study various sample designs for indexing and our simulations showed that indexing leading to spatially compact partitions are best over a range of sample sizes, autocorrelation values, and generating processes. Partitions can be kept small, on the order of 50 samples per partition. We use nearest-neighbors for kriging and block kriging, finding that 50 nearest-neighbors is sufficient. In all cases, confidence intervals for fixed effects, and prediction intervals for (block) kriging, have appropriate coverage. Some advantages of spatial indexing are that it is available for any valid covariance matrix, can take advantage of parallel computing, and easily extends to non-Euclidean topologies, such as stream networks. We use stream networks to show how spatial indexing can achieve all four goals, listed above, for very large data sets, in a matter of minutes, rather than days, for an example data set.

Funder

U.S. Environmental Protection Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

1. Statistics for Spatial Data

2. A modeling approach for large spatial datasets;ML Stein;Journal of the Korean Statistical Society,2008

3. Geostatistics

4. Recovery of inter-block information when block sizes are unequal;HD Patterson;Biometrika,1971

5. Patterson H, Thompson R. Maximum likelihood estimation of components of variance. In: Proceedings of the 8th International Biometric Conference. Biometric Society, Washington, DC; 1974. p. 197–207.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3