Presence of coronaviruses in the common pipistrelle (P. pipistrellus) and Nathusius´ pipistrelle (P. nathusii) in relation to landscape composition

Author:

Jaramillo Ortiz LauraORCID,Begeman Lineke,Schillemans Marcel,Kuiken Thijs,de Boer Willem Frederik

Abstract

Changes in land use can modify habitat and roosting behaviour of bats, and therefore the transmission dynamics of viruses. Within bat roosts the density and contact rate among individuals increase and may facilitate the transmission of bat coronaviruses (CoVs). Landscape components supporting larger bat populations may thus lead to higher CoVs prevalence, as the number of roosts and/or roost size are likely to be higher. Hence, relationships between landscape composition and the presence of CoVs are expected to exist. To increase our understanding of the spread and shedding of coronaviruses in bat populations we studied the relationships between landscape composition and CoVs prevalence in the species Pipistrellus pipistrellus and Pipistrellus nathusii. Faecal samples were collected across The Netherlands, and were screened to detect the presence of CoV RNA. Coordinates were recorded for all faecal samples, so that landscape attributes could be quantified. Using a backward selection procedure on the basis of AIC, the landscape variables that best explained the presence of CoVs were selected in the final model. Results suggested that relationships between landscape composition and CoVs were likely associated with optimal foraging opportunities in both species, e.g. nearby water in P. nathusii or in areas with more grassland situated far away from forests for P. pipistrellus. Surprisingly, we found no positive association between built-up cover (where roosts are frequently found) and the presence of bat-CoVs for both species. We also show that samples collected from large bat roosts, such as maternity colonies, substantially increased the probability of finding CoVs in P. pipistrellus. Interestingly, while maternity colonies of P. nathusii are rarely present in The Netherlands, CoVs prevalence was similar in both species, suggesting that other mechanisms besides roost size, participate in the transmission of bat-CoVs. We encourage further studies to quantify bat roosts and colony networks over the different landscape compositions to better understand the ecological mechanisms involved in the transmission of bat-CoVs.

Funder

Dutch ZonMw program on non-alimentary zoonoses

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

1. Ecology of zoonotic infectious diseases in bats: Current knowledge and futured directions;DTS Hayman;Zoon Public Heal,2013

2. Global epidemiology of bat coronaviruses.;ACP Wong;Viruses.,2019

3. Evolutionary relationships between bat coronaviruses and their hosts;SY Zhang;Emerg Infect Dis,2007

4. Amplification of emerging viruses in a bat colony;JF Drexler;Emerg Infect Dis,2011

5. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany;F Gloza-Rausch;Emerg Infect Dis,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3