Qualitative classification of thrombus images as a way to improve quantitative analysis of thrombus formation in flow chamber assays

Author:

Kamola Piotr,Przygodzki TomaszORCID

Abstract

Background Thrombus formation in vitro under flow conditions is one of the most widely used methods to study haemostasis and to evaluate the activity of potential antithrombotic compounds. Assessment of the results of these experiments is often based on a quantification of microscopic images of thrombi. In a majority of reported analysis all thrombi visualised in an image are quantified as one homogenous class. In some protocols, qualitative assessment of thrombi morphology based on a visual comparison of evaluated images with representative images of predefined classes of thrombi are performed by experienced analysts. In presented paper we show how the quantitative analysis can be improved by classification of thrombi on the basis of defined morphological features prior to quantification and we suggest that machine learning-based approach can improve this way of analysis. Methods We tested the applicability of machine learning-based segmentation and classification of thrombi images to improve the outcome of quantification of the results of flow chamber assays. For this, we used the public domain machine learning software Ilastik for bioimage analysis developed at the European Molecular Biology Laboratory. A model was trained to distinguish two classes of thrombi based on certain morphological features which apparently correspond to the stage of thrombus development. Thrombi formed in the presence of a model antiplatelet compound—abciximab or in control conditions were quantified with the use of this model and the results were compared to quantification where all thrombi were quantified as a homogenous class. Results Machine learning-based analysis was capable of effective distinguishing of two classes of morphologically distinct platelet aggregates. The use of the model which segmented and quantified only the objects recognized as compacted structures provided results which better mirrored the actual effect of an antiplatelet treatment than quantification based on all structures. Conclusions Classification of thrombi enabled by machine learning increases the relevance of quantitative information and allows better evaluation of the results of in vitro thrombosis assays.

Funder

Narodowe Centrum Nauki

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3