Abstract
Sleep stages classification is one of the new topics in studying human life quality because it plays a crucial role in getting a healthy lifestyle. Abnormal changes or absence of normal sleep may lead to different diseases such as heart-related diseases, diabetes, and obesity. In general, sleep staging analysis can be performed using electroencephalography (EEG) signals. This study proposes a convolutional neural network (CNN) based methodology for sleep stage classification using EEG signals taken by six channels and transformed into time-frequency analysis images. The proposed methodology consists of three major steps: (i) segment the EEG signal into epochs with 30 seconds in length, (ii) convert epochs into 2D representation using time-frequency analysis, and (iii) feed the 2D time-frequency analysis to the 2D CNN. The results showed that the proposed methodology is robust and achieved a very high accuracy of 99.39% for channel C4-A1. All other channels have accuracy values above 98.5%, which indicates that any channel can be used for sleep stage classification with high accuracy. The proposed methodology outperformed the methods in the literature in terms of overall accuracy or single channel accuracy. It is expected to provide a great benefit for physicians, especially neurologists; by providing them with a new powerful tool to support the clinical diagnosis of sleep-related diseases.
Publisher
Public Library of Science (PLoS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献