Field-based detection of bacteria using nanopore sequencing: Method evaluation for biothreat detection in complex samples

Author:

Tyler Andrea D.ORCID,McAllister Jane,Stapleton Helen,Gauci Penny,Antonation Kym,Thirkettle-Watts David,Corbett Cindi R.

Abstract

From pathogen detection to genome or plasmid closure, the utility of the Oxford Nanopore Technologies (ONT) MinION for microbiological analysis has been well documented. The MinION’s small footprint, portability, and real-time analytic capability situates it well to address challenges in the field of unbiased pathogen detection, as a component of a security investigation. To this end, a multicenter evaluation of the effect of alternative analytical approaches on the outcome of MinION-based sequencing, using a set of well-characterized samples, was explored in a field-based scenario. Three expert scientific response groups evaluated known bacterial DNA extracts as part of an international first responder (Chemical, Biological, Radiological) training exercise. Samples were prepared independently for analysis using the Rapid and/or Rapid PCR sequencing kits as per the best practices of each of the participating groups. Analyses of sequence data were in turn conducted using varied approaches including ONTs What’s in my pot (WIMP) architecture and in-house computational pipelines. Microbial community composition and the ability of each approach to detect pathogens was compared. Each group demonstrated the ability to detect all species present in samples, although several organisms were detected at levels much lower than expected with some organisms even falling below 1% abundance. Several ‘contaminant’ near neighbor species were also detected, at low abundance. Regardless of the sequencing approach chosen, the observed composition of the bacterial communities diverged from the input composition in each of the analyses, although sequencing conducted using the rapid kit produced the least distortion when compared to PCR-based library preparation methods. One of the participating groups generated drastically lower sequencing output than the other groups, likely attributed to the limited computer hard drive capacity, and occasional disruption of the internet connection. These results provide further consideration for conducting unbiased pathogen identification within a field setting using MinION sequencing. However, the benefits of this approach in providing rapid results and unbiased detection must be considered along with the complexity of sample preparation and data analytics, when compared to more traditional methods. When utilized by trained scientific experts, with appropriate computational resources, the MinION sequencing device is a useful tool for field-based pathogen detection in mixed samples.

Funder

Canadian Safety and Security Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference17 articles.

1. Evaluation of Oxford Nanopore’s MinION Sequencing Device for Microbial Whole Genome Sequencing Applications.;AD Tyler;Sci Rep,2018

2. Field-based species identification of closely-related plants using real-time nanopore sequencing.;J Parker;Sci Rep [Internet].,2017

3. Benchmarking the MinION: Evaluating long reads for microbial profiling.;RM Leidenfrost;Sci Rep [Internet].,2020

4. MinION as part of a biomedical rapidly deployable laboratory;MC Walter;J Biotechnol [Internet].,2017

5. Application of highly portable MinION nanopore sequencing technology for the monitoring of nosocomial tuberculosis infection;M Bates;Int J Mycobacteriology [Internet].,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3