Can ChatGPT assist authors with abstract writing in medical journals? Evaluating the quality of scientific abstracts generated by ChatGPT and original abstracts

Author:

Hwang TaesoonORCID,Aggarwal Nishant,Khan Pir Zarak,Roberts ThomasORCID,Mahmood Amir,Griffiths Madlen M.,Parsons Nick,Khan Saboor

Abstract

Introduction ChatGPT, a sophisticated large language model (LLM), has garnered widespread attention for its ability to mimic human-like communication. As recent studies indicate a potential supportive role of ChatGPT in academic writing, we assessed the LLM’s capacity to generate accurate and comprehensive scientific abstracts from published Randomised Controlled Trial (RCT) data, focusing on the adherence to the Consolidated Standards of Reporting Trials for Abstracts (CONSORT-A) statement, in comparison to the original authors’ abstracts. Methodology RCTs, identified in a PubMed/MEDLINE search post-September 2021 across various medical disciplines, were subjected to abstract generation via ChatGPT versions 3.5 and 4, following the guidelines of the respective journals. The overall quality score (OQS) of each abstract was determined by the total number of adequately reported components from the 18-item CONSORT-A checklist. Additional outcome measures included percent adherence to each CONOSORT-A item, readability, hallucination rate, and regression analysis of reporting quality determinants. Results Original abstracts achieved a mean OQS of 11.89 (95% CI: 11.23–12.54), outperforming GPT 3.5 (7.89; 95% CI: 7.32–8.46) and GPT 4 (5.18; 95% CI: 4.64–5.71). Compared to GPT 3.5 and 4 outputs, original abstracts were more adherent with 10 and 14 CONSORT-A items, respectively. In blind assessments, GPT 3.5-generated abstracts were deemed most readable in 62.22% of cases which was significantly greater than the original (31.11%; P = 0.003) and GPT 4-generated (6.67%; P<0.001) abstracts. Moreover, ChatGPT 3.5 exhibited a hallucination rate of 0.03 items per abstract compared to 1.13 by GPT 4. No determinants for improved reporting quality were identified for GPT-generated abstracts. Conclusions While ChatGPT could generate more readable abstracts, their overall quality was inferior to the original abstracts. Yet, its proficiency to concisely relay key information with minimal error holds promise for medical research and warrants further investigations to fully ascertain the LLM’s applicability in this domain.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3