Network traits driving knowledge evolution in open collaboration systems

Author:

Ren RuqinORCID,He JiaORCID

Abstract

Network interpretation illuminates our understanding of the dynamic nature of cultural evolution. Guided by cultural evolution theory, this article explores how people collectively develop knowledge through knowledge collaboration network traits. Using network data from 910 artifacts (the WikiProject Aquarium Fishes articles) over 163 weeks, two studies were designed to understand how collaboration network traits drive population and artifact-level knowledge evolution. The first study examines the selection pressure imposed by10 network traits (against 11 content traits) on population-level evolutionary outcomes. While network traits are vital in identifying natural selection pressure, intriguingly, no significant difference was found between network traits and content traits, challenging a recent theory on network-driven evolution. The second study utilizes time series analysis to reveal that three network traits (embeddedness, connectivity, and redundancy) at a prior time predict future artifact development trajectory. This implies that people collectively explore various positions in a potential solution space, suggesting content exploration as a possible explanation of knowledge evolution. In summary, understanding the interplay between network traits and content exploration provides valuable insights into the mechanisms driving knowledge evolution and offers new avenues for future research.

Funder

Pujiang Talent Program

Humanities and Social Sciences Youth Foundation, Ministry of Education of the People's Republic of China

SJTU – International Association of Cultural and Creative Industry Research program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3