Advanced muscle imaging in adolescent elite rowers utilizing diffusion tensor imaging: Association of imaging findings with stroke typology

Author:

Marth Adrian AlexanderORCID,Auer Timo Alexander,Bertalan Gergely,Gebert Pimrapat,Kirchenberger Timo,Geisel Dominik,Hamm Bernd,Keller Sarah

Abstract

Purpose Muscular overuse injuries are a common health issue in elite athletes. Changes in the muscular microenvironment can be depicted by Diffusion Tensor Imaging (DTI). We hypothesize that the biomechanics of different stroke typologies plays a role in muscle injury and tested our hypothesis by magnetic resonance imaging (MRI) examination of the lumbar spine muscles of adolescent rowers utilizing DTI. Methods and materials Twenty-two male elite rowers (12 sweep, 10 scull rowers) with a mean age of 15.8 ± 1.2 years underwent 3-Tesla MRI of the lumbar spine 6 hours after cessation of training. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated for the erector spinae and multifidus muscle. Student’s t-test was used to test differences of DTI parameters between sweep and scull rowers and a Pearson correlation was utilized to correlate the parameters to training volume. Results ADC values in the erector spinae and multifidus muscle were significantly higher (p = 0.039) and FA values significantly lower (p < 0.001) in sweep rowers compared to scull rowers. There was no significant association between DTI parameters and training volume (r ≤ -0.459, p ≥ 0.074). Conclusions Our DTI results show that lumbar spine muscle diffusivity is higher in sweep rowers than in scull rowers. Altered muscle diffusivity is suggestive of microscopic tissue disruption and might be attributable to biomechanical differences between stroke typologies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3