A robust cusum control chart for median absolute deviation based on trimming and winsorization

Author:

Khalil UmairORCID,Khan Tahira Saeed,Hamdi Walaa Ahmad,Khan Dost Muhammad,Hamraz Muhammad

Abstract

Statistical quality control is concerned with the analysis of production and manufacturing processes. Control charts are process control techniques, commonly applied to observe and control deviations. Shewhart control charts are very sensitive and used for large shifts based on the basic assumption of normality. Cumulative Sum (CUSUM) control charts are effective for identifying that may have special causes, such as outliers or excessive variability in subgroup means. This study uses a CUSUM control chart problems structure to evaluate the performance of robust dispersion parameters. We investigated the design structure features of various control charts, based on currently defined estimators and some new robust scale estimators using trimming and winsorization in different scenarios. The Median Absolute Deviation based on trimming and winsorization is introduced. The effectiveness of CUSUM control charts based on these estimators is evaluated in terms of average run length (ARL) and Standard Deviation of the Run Length (SDRL) using a simulation study. The results show the robustness of the CUSUM chart in observing small changes in magnitude for both normal and contaminated data. In general, robust estimators MADTM and MADWM based on CUSUM charts outperform in all environments.

Publisher

Public Library of Science (PLoS)

Reference34 articles.

1. Continuous Inspection Schemes;E.S. Page;Biometrika,1954

2. Enhanced Cumulative Sum Charts for Monitoring Process Dispersion;Mu’azu Ramat Abujiya;PLOS ONE,2015

3. A new CUSUM control chart under uncertainty with applications in petroleum and meteorology;Muhammad Aslam;PLOS ONE,2021

4. Control Chart Tests Based on Geometric Moving Average;S.W. Roberts;Technometrics,1959

5. Exponentially weighted moving average—Moving average charts for monitoring the process mean;Saowanit Sukparungsee;PLOS ONE,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3