The impact of vegetative and solid roadway barriers on particulate matter concentration in urban settings

Author:

Greenwald RobyORCID,Sarnat Jeremy A.,Fuller Christina H.ORCID

Abstract

A potentially important approach for reducing exposure to traffic-related air pollution (TRAP) is the use of roadside barriers to reduce dispersion from highway sources to adjacent populated areas. The Trees Reducing Environmental Exposures (TREE) study investigated the effect of vegetative and solid barriers along major controlled-access highways in Atlanta, Georgia, USA by simultaneously sampling TRAP concentration at roadside locations in front of barriers and at comparison locations down-range. We measured black carbon (BC) mass concentration, particle number concentration (PNC), and the size distribution of ultrafine aerosols. Our sample sites encompassed the range of roadway barrier options in the Atlanta area: simple chain-link fences, solid barriers, and vegetative barriers. We used Generalized Linear Mixed Models (GLMMs) to estimate the effect of barrier type on the ratio of particle concentrations at the comparison site relative to the roadside site while controlling for covariates including wind direction, temperature, relative humidity, traffic volume, and distance to the roadway. Vegetative barriers exhibited the greatest TRAP reduction in terms of BC mass concentration (37% lower behind a vegetative barrier) as well as PNC (6.7% lower), and sensitivity analysis was consistent with this effect being more pronounced when the barrier was downwind of the highway. The ultrafine size distribution was comprised of modestly smaller particles on the highway side of the barrier. Non-highway particle sources were present at all sample sites, most commonly motor vehicle emissions from nearby arterials or secondary streets, which may have obscured the effect of roadside barriers.

Funder

National Institute of Environmental Health Sciences

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. HEI. State of Global Air 2019. Boston, MA: Health Effects Institute; 2019.

2. Cumulative lifetime burden of cardiovascular disease from early exposure to air pollution;JB Kim;J Am Heart Assoc,2020

3. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children’s Health Study;Z Chen;Journal of Thoracic Disease,2015

4. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacology &;LG Costa;Therapeutics,2020

5. Air pollution and dementia: a systematic review;R Peters;Journal of Alzheimer’s Disease,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3