EFFNet: A skin cancer classification model based on feature fusion and random forests

Author:

Ma XiaopuORCID,Shan Jiangdan,Ning Fei,Li Wentao,Li He

Abstract

Computer-aided diagnosis techniques based on deep learning in skin cancer classification have disadvantages such as unbalanced datasets, redundant information in the extracted features and ignored interactions of partial features among different convolutional layers. In order to overcome these disadvantages, we propose a skin cancer classification model named EFFNet, which is based on feature fusion and random forests. Firstly, the model preprocesses the HAM10000 dataset to make each category of training set images balanced by image enhancement technology. Then, the pre-training weights of the EfficientNetV2 model on the ImageNet dataset are fine-tuned on the HAM10000 skin cancer dataset. After that, an improved hierarchical bilinear pooling is introduced to capture the interactions of some features between the layers and enhance the expressive ability of features. Finally, the fused features are passed into the random forests for classification prediction. The experimental results show that the accuracy, recall, precision and F1-score of the model reach 94.96%, 93.74%, 93.16% and 93.24% respectively. Compared with other models, the accuracy rate is improved to some extent and the highest accuracy rate can be increased by about 10%.

Funder

Nanyang Normal University

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. Diagnosis and management of skin cancer;E Craythorne;Medicine,2021

2. Cancer statistics, 2018;RL Siegel;CA: a cancer journal for clinicians,2018

3. Clinical characteristics of malignant melanoma in central China and predictors of metastasis;K Shi;Oncology Letters,2020

4. SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability;RK Singh;Plos one,2022

5. Dermoscopy of pigmented skin lesions–a valuable tool for early;G Argenziano;The lancet oncology,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3