How three-dimensional sketching environments affect spatial thinking: A functional magnetic resonance imaging study of virtual reality

Author:

Tung Yu-HsinORCID,Chang Chun-YenORCID

Abstract

Designers rely on sketching to visualize and refine their initial ideas, and virtual reality (VR) tools now facilitate sketching in immersive 3D environments. However, little research has been conducted on the differences in the visual and spatial processes involved in 3D versus 2D sketching and their effects on cognition. This study investigated potential differences in spatial and visual functions related to the use of 3D versus 2D sketching media by analyzing functional magnetic resonance imaging (fMRI) data. We recruited 20 healthy, right-handed students from the Department of Horticulture and Landscape Architecture with at least three years of experience in freehand landscape drawing. Using an Oculus Quest VR headset controller and a 12.9-inch iPad Pro with an Apple Pencil, we tested participants individually with 3D and 2D sketching, respectively. When comparing 2D and 3D sketches, our fMRI results revealed significant differences in the activation of several brain regions, including the right middle temporal gyrus, both sides of the parietal lobe, and the left middle occipital gyrus. We also compared different sketching conditions, such as lines, geometrical objects (cube), and naturalistic objects (perspective view of a tree), and found significant differences in the spatial and visual recognition of brain areas that support visual recognition, composition, and spatial perception. This finding suggests that 3D sketching environments, such as VR, may activate more visual–spatial functions during sketching compared to 2D environments. The result highlights the potential of immersive sketching environments for design-related processes and spatial thinking.

Funder

National Science and Technology Council

Publisher

Public Library of Science (PLoS)

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3