Significant duration prediction of seismic ground motions using machine learning algorithms

Author:

Li Xinle,Gao Pei

Abstract

This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.

Publisher

Public Library of Science (PLoS)

Reference20 articles.

1. Caracteristicas de terremotos Analisis general.;L.R. Husid;Revisto del IDEM8 Santiago de Chile,1969

2. Earthquake hazards for buildings;N. C. Donovan;Building Science Series,1972

3. A Study on the Duration of Strong Earthquake Ground Motion;M.D. Trifunac;Bulletin of the Seismological Society of America,1975

4. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity;P.G. Somerville;Seismological Reseumh Letters,1997

5. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects;J. J. Kempton;Earthquake spectra,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3