Abstract
Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to fresh markets and industry. These models identify superior and persistent individuals using probability theory, providing a measure of uncertainty that can aid the recommendation. The objective of our study was to evaluate the use of a Bayesian probabilistic model for the recommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests. Leveraging the Monte Carlo Hamiltonian sampling algorithm, we calculated the probability of superior performance (superior genotypic value), and the probability of superior stability (reduced variance of the genotype-by-harvests interaction) of each genotype. The probability of superior stability was compared to a measure of persistence estimated from genotypic values predicted using a frequentist model. Our results demonstrated the applicability and advantages of the Bayesian probabilistic model, yielding similar parameters to those of the frequentist model, while providing further information about the probabilities associated with genotype performance and stability. Genotypes G15, G4, G18, and G11 emerged as the most superior in performance, whereas G24, G7, G13, and G3 were identified as the most stable. This study highlights the usefulness of Bayesian probabilistic models in the fruit trees cultivars recommendation.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa e Inovação do Espírito Santo
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献