Load balance -aware dynamic cloud-edge-end collaborative offloading strategy

Author:

Fan YueqiORCID

Abstract

Cloud-edge-end (CEE) computing is a hybrid computing paradigm that converges the principles of edge and cloud computing. In the design of CEE systems, a crucial challenge is to develop efficient offloading strategies to achieve the collaboration of edge and cloud offloading. Although CEE offloading problems have been widely studied under various backgrounds and methodologies, load balance, which is an indispensable scheme in CEE systems to ensure the full utilization of edge resources, is still a factor that has not yet been accounted for. To fill this research gap, we are devoted to developing a dynamic load balance -aware CEE offloading strategy. First, we propose a load evolution model to characterize the influences of offloading strategies on the system load dynamics and, on this basis, establish a latency model as a performance metric of different offloading strategies. Then, we formulate an optimal control model to seek the optimal offloading strategy that minimizes the latency. Second, we analyze the feasibility of typical optimal control numerical methods in solving our proposed model, and develop a numerical method based on the framework of genetic algorithm. Third, through a series of numerical experiments, we verify our proposed method. Results show that our method is effective.

Funder

The Second Batch of National Vocational Education Teacher Teaching Innovation Team Research Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. A review and state of art of Internet of Things (IoT);AA Laghari;Archives of Computational Methods in Engineering,2021

2. Edge-computing-enabled smart cities: A comprehensive survey;LU Khan;IEEE Internet of Things Journal,2020

3. Edge computing in industrial internet of things: Architecture, advances and challenges;T Qiu;IEEE Communications Surveys & Tutorials,2020

4. Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability;C Kai;IEEE Transactions on Cognitive Communications and Networking,2020

5. An intelligent end–edge–cloud architecture for visual IoT-assisted healthcare systems;Z Yang;IEEE Internet of Things Journal,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3