Microbiome distribution modeling using gradient descent strategies for mock, in vitro and clinical community distributions

Author:

Velasco-Álvarez Juan Ricardo,Torres y Torres Nimbe,Chairez Isaac,Castrejón-Flores José LuisORCID

Abstract

The human gut is home to a complex array of microorganisms interacting with the host and each other, forming a community known as the microbiome. This community has been linked to human health and disease, but understanding the underlying interactions is still challenging for researchers. Standard studies typically use high-throughput sequencing to analyze microbiome distribution in patient samples. Recent advancements in meta-omic data analysis have enabled computational modeling strategies to integrate this information into an in silico model. However, there is a need for improved parameter fitting and data integration features in microbial community modeling. This study proposes a novel alternative strategy utilizing state-of-the-art dynamic flux balance analysis (dFBA) to provide a simple protocol enabling accurate replication of abundance data composition through dynamic parameter estimation and integration of metagenomic data. We used a recurrent optimization algorithm to replicate community distributions from three different sources: mock, in vitro, and clinical microbiome. Our results show an accuracy of 98% and 96% when using in vitro and clinical bacterial abundance distributions, respectively. The proposed modeling scheme allowed us to observe the evolution of metabolites. It could provide a deeper understanding of metabolic interactions while taking advantage of the high contextualization features of GEM schemes to fit the study case. The proposed modeling scheme could improve the approach in cases where external factors determine specific bacterial distributions, such as drug intake.

Funder

CONACYT

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3