The research of touch screen usability in civil aircraft cockpit

Author:

Wang XiaoliORCID,Guo Wei,Zhong Zhenwei,Zeng Rui,Zhang Jiong,Wang Lijing

Abstract

With the advancement of touch screen technology, the application of touch screens in civil aircraft cockpits has become increasingly popular. However, further analysis and research are required to fully promote its applications. The paper researched the usability of touch screens in aircraft cockpit considering the operation performance and subjective NASA-TLX workload evaluation, conducted experimental research on three touch gestures: click, drag, and zoom. Additionally, a comparative analysis was conducted on the touch performance under different layouts, positions, touch sizes, dragging direction angles, and zoom multiples. The touch performance indicators include operation time, error rate, operation speed, and workload. The experimental results show that the 21 mm size has the minimum operation time and workload, and 18 mm size has the lowest error rate in the clicking tasks. Additionally, the performance and workload of the captain’s layout are better than those of the co-pilot’s layout, and the performance of the center console position is best. The operation speed of the dragging tasks is faster when performed at position R3 compared to other positions. The dragging moving angles with better operation speed are 80°-190° and 250°-290°. The operation performance and workload of the zooming tasks vary depending on the zoom multiples. As the multiple increases, the operation time and workload also increase. There is no difference in operation performance or workload between zooming in and zooming out. The paper provides experimental support and suggestions based on human operation and subjective NASA-TLX workload evaluation for the application of touch screens in civil aircraft cockpits.

Publisher

Public Library of Science (PLoS)

Reference27 articles.

1. Gamin Company. https://www.garmin.com/en-US/p/90821.

2. L Bécouarn, Dominici J, Bader J, et al. ODICIS (One Display for a Cockpit Interactive Solution)—Final public progress report. 2012.

3. Honeywell Company. https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/cockpit-systems-and-displays/primus-epic-for-symmetry.

4. Boeing Company. https://www.boeing.com/commercial/777x/by-design/#/flight-deck.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3