Dense neural network outperforms other machine learning models for scaling-up lichen cover maps in Eastern Canada

Author:

Richardson GalenORCID,Knudby AndersORCID,Chen Wenjun,Sawada Michael,Lovitt Julie,He Liming,Naeni Leila Yousefizadeh

Abstract

Lichen mapping is vital for caribou management plans and sustainable land conservation. Previous studies have used random forest, dense neural network, and convolutional neural network models for mapping lichen coverage. However, to date, it is not clear how these models rank in this task. In this study, these machine learning models were evaluated on their ability to predict lichen percent coverage in Sentinel-2 imagery in Québec and Labrador, Canada. The models were trained on 10-m resolution lichen coverage (%) maps created from 20 drone surveys collected in July 2019 and 2022. The dense neural network achieved a higher accuracy than the other two, with a reported mean absolute error of 5.2% and an R2 of 0.76. By comparison, the random forest model returned a mean absolute error of 5.5% (R2: 0.74) and the convolutional neural network had a mean absolute error of 5.3% (R2: 0.74). A regional lichen map was created using the trained dense neural network and a Sentinel-2 imagery mosaic. There was greater uncertainty on land covers that the model was not exposed to in training, such as mines and deep lakes. While the dense neural network requires more computational effort to train than a random forest model, the 5.9% performance gain in the test pixel comparison renders it the most suitable for lichen mapping. This study represents progress toward determining the appropriate methodology for generating accurate lichen maps from satellite imagery for caribou conservation and sustainable land management.

Funder

Association of Canadian Universities for Northern Studies

Natural Sciences and Engineering Research Council of Canada

Natural Resources Canada

University of Ottawa

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Rangifer tarandus;A. Gunn;The IUCN Red List of Threatened Species,2016

2. Mapping lichen in a caribou habitat of Northern Quebec, Canada, using an enhancement-classification method and spectral mixture analysis;J Théau;Remote Sensing of Environment,2005

3. Climate‐informed forecasts reveal dramatic local habitat shifts and population uncertainty for northern boreal caribou;FEC Stewart;Ecological Applications,2023

4. Lichen cover mapping for caribou ranges in interior Alaska and Yukon;MJ MacAnder;Environmental Research Letters,2020

5. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities;IH Myers-Smith;Environmental Research Letters,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3