GIS-statically-based modelling the groundwater quality assessment coupled with soil and terrain attributes data

Author:

Chen YuwenORCID

Abstract

In this study, we investigated the application of Geographic Information Systems (GIS) for groundwater quality assessment through the integration of statistical models with soil and topographical data. Our primary objectives were to identify soil parameters and topographical attributes contributing to groundwater quality assessment and to evaluate the potential of geostatistics and GIS for spatial analysis of groundwater resources. Groundwater samples were collected from 43 agricultural wells, and surface soil layer samples (0–20 cm) were obtained near each well. We measured groundwater quality parameters and relevant soil properties. Our approach involved the utilization of multiple linear regression (MLR) and principal component regression (PCR), combined with topographical terrain attributes and soil data, for modeling groundwater electrical conductivity (GEC). Our findings revealed significant correlations between GEC and soil electrical conductivity (EC) (r = 0.89) as well as soil carbonate (CaCO3) (r = 0.68). Among the ten topographical attributes considered, the terrain wetness index (TWI) exerted the highest influence on GEC (r = 0.57), followed by the slope (r = -0.47). Further analysis demonstrated that the MLR model outperformed the PCR model in both the development and calibration datasets, with an achieved R2value of 0.89 and a root mean square error (RMSE)of 150 μScm-1 for MLR, compared to an R2 of 0.85 and an RMSE of 170 μScm-1 for PCR when coupled with soil and attribute data for GEC prediction. The resulting GEC map generated from the MLR model displayed spatial variations, ranging from 605 μScm-1 in the northern region to 1275 μScm-1 in the central part of the study site. In conclusion, our study demonstrated the effectiveness of combining statistical modeling with geostatistics and GIS for groundwater quality assessment, providing valuable insights for resource management and environmental planning.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3