A simple method to measure methane emissions from indoor gas leaks

Author:

Nicholas DominicORCID,Ackley Robert,Phillips Nathan G.

Abstract

From wellhead to burner tip, each component of the natural gas process chain has come under increased scrutiny for the presence and magnitude of methane leaks, because of the large global warming potential of methane. Top-down measures of methane emissions in urban areas are significantly greater than bottom-up estimates. Recent research suggests this disparity might in part be explained by gas leaks from one of the least understood parts of the process chain: behind the gas meter in homes and buildings. However, little research has been performed in this area and few methods and data sets exist to measure or estimate them. We develop and test a simple and widely deployable closed chamber method that can be used for quantifying indoor methane emissions with an order-of-magnitude precision which allows for screening of indoor large volume (“super-emitting”) leaks. We also perform test applications of the method finding indoor leaks in 90% of the 20 Greater Boston buildings studied and indoor methane emissions between 0.02–0.51 ft3 CH4 day-1 (0.4–10.3 g CH4 day-1) with a mean of 0.14 ft3 CH4 day-1 (2.8 g CH4 day-1). Our method provides a relatively simple way to scale up indoor methane emissions data collection. Increased data may reduce uncertainty in bottom-up inventories, and can be used to find super-emitting indoor emissions which may better explain the disparity between top-down and bottom-up post-meter emissions estimates.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

1. Climate Change 2013: The Physical Science Basis.;T.F. Stocker;Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts;K. McKain;Proceedings of the National Academy of Sciences,2015

3. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments;M.F. Hendrick;Environ. Pollut,2016

4. Spatial patterns and source attribution of urban methane in the Los Angeles Basin;F.M. Hopkins;Journal of Geophysical Research: Atmospheres,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3