Abstract
Many real-world systems give rise to a time series of symbols. The elements in a sequence can be generated by agents walking over a networked space so that whenever a node is visited the corresponding symbol is generated. In many situations the underlying network is hidden, and one aims to recover its original structure and/or properties. For example, when analyzing texts, the underlying network structure generating a particular sequence of words is not available. In this paper, we analyze whether one can recover the underlying local properties of networks generating sequences of symbols for different combinations of random walks and network topologies. We found that the reconstruction performance is influenced by the bias of the agent dynamics. When the walker is biased toward high-degree neighbors, the best performance was obtained for most of the network models and properties. Surprisingly, this same effect is not observed for the clustering coefficient and eccentric, even when large sequences are considered. We also found that the true self-avoiding displayed similar performance as the one preferring highly-connected nodes, with the advantage of yielding competitive performance to recover the clustering coefficient. Our results may have implications for the construction and interpretation of networks generated from sequences.
Funder
Lilly Endowment, Inc
CNPq
São Paulo Research Foundation
Indiana University Pervasive Technology Institute
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献