Social media feedback and extreme opinion expression

Author:

Konovalova ElizavetaORCID,Le Mens GaëlORCID,Schöll Nikolas

Abstract

On popular social media platforms such as Twitter, Facebook, Instagram, or Tiktok, the quantitative feedback received by content producers is asymmetric: counts of positive reactions such as ‘likes,’ or ‘retweets,’ are easily observed but similar counts of negative reactions are not directly available. We study how this design feature of social media platforms affects the expression of extreme opinions. Using simulations of a learning model, we compare two feedback environments that differ in terms of the availability of negative reaction counts. We find that expressed opinions are generally more extreme when negative reaction counts are not available than when they are. We rely on analyses of Twitter data and several online experiments to provide empirical support for key model assumptions and test model predictions. Our findings suggest that a simple design change might limit, under certain conditions, the expression of extreme opinions on social media.

Funder

Agencia Estatal de Investigación

H2020 European Research Council

Fundación BBVA

Severo Ochoa Programme for Centres of Excellence in R\&D

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3