Enhancing economic competitiveness analysis through machine learning: Exploring complex urban features

Author:

Xu XiaofengORCID,Chen ZhaoyuanORCID,Chen Shixiang

Abstract

Urban economic competitiveness is a fundamental indicator for assessing the level of urban development and serves as an effective approach for understanding regional disparities. Traditional economic competitiveness research that relies solely on traditional regression models and assumes feature relationship theory tends to fall short in fully exploring the intricate interrelationships and nonlinear associations among features. As a result, the study of urban economic disparities remains limited to a narrow range of urban features, which is insufficient for comprehending cities as complex systems. The ability of deep learning neural networks to automatically construct models of nonlinear relationships among complex features provides a new approach to research in this issue. In this study, a complex urban feature dataset comprising 1008 features was constructed based on statistical data from 283 prefecture-level cities in China. Employing a machine learning approach based on convolutional neural network (CNN), a novel analytical model is constructed to capture the interrelationships among urban features, which is applied to achieve accurate classification of urban economic competitiveness. In addition, considering the limited number of samples in the dataset owing to the fixed number of cities, this study developed a data augmentation approach based on deep convolutional generative adversarial network (DCGAN) to further enhance the accuracy and generalization ability of the model. The performance of the CNN classification model was effectively improved by adding the generated samples to the original sample dataset. This study provides a precise and stable analytical model for investigating disparities in regional development. In the meantime, it offers a feasible solution to the limited sample size issue in the application of deep learning in urban research.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. On China’ s Development Model: The Costs and Benefits of China’ s Decentralization Approach to Transition.;Y Wang;Econ Res J,2007

2. Education reform for raising economic competitiveness.;P. Sahlberg;J Educ Change,2006

3. How do national economic competitiveness indices view human capital?;JA Sabadie;Eur J Educ,2010

4. Competitiveness and the urban economy: twenty-four large US metropolitan areas.;PK Kresl;Urban Stud.,1999

5. Urban characteristics attributable to density-driven tie formation.;W Pan;Nat Commun,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3