Detection and validation of common noctule bats (Nyctalus noctula) with a pulse radar and acoustic monitoring in the proximity of an onshore wind turbine

Author:

Krapivnitckaia PolinaORCID,Kreutzfeldt Jannes,Schritt Helge,Reimers Holger,Floeter Carolin,Reich Michael,Kunz Veit Dominik

Abstract

This paper presents the results of bats detected with marine radar and their validation with acoustic detectors in the vicinity of a wind turbine with a hub height of 120 m. Bat detectors are widely used by researchers, even though the common acoustic detectors can cover only a relatively small volume. In contrast, radar technology can overcome this shortcoming by offering a large detection volume, fully covering the rotor-swept areas of modern wind turbines. Our study focused on the common noctule bats (Nyctalus noctula). The measurement setup consisted of a portable X-band pulse radar with a modified radar antenna, a clutter shielding fence, and an acoustic bat detector installed in the wind turbine’s nacelle. The radar’s detection range was evaluated using an analytical simulation model. We developed a methodology based on a strict set of criteria for selecting suitable radar data, acoustic data and identified bat tracks. By applying this methodology, the study data was limited to time intervals with an average duration of 48 s, which is equal to approximately 20 radar images. For these time intervals, 323 bat tracks were identified. The most common bat speed was extracted to be between 9 and 10 m/s, matching the values found in the literature. Of the 323 identified bat tracks passed within 80 m of the acoustic detector, 32% had the potential to be associated with bat calls due to their timing, directionality, and distance to the acoustic bat detector. The remaining 68% passed within the studied radar detection volume but out of the detection volume of the acoustic bat detector. A comparison of recorded radar echoes with the expected simulated values indicated that the in-flight radar cross-section of recorded common noctule bats was mostly between 1.0 and 5.0 cm2, which is consistent with the values found in the literature for similar sized wildlife.

Funder

German Federal Ministry of Education and Research

Publisher

Public Library of Science (PLoS)

Reference78 articles.

1. Bat Mortality at Wind Turbines in Northwestern Europe;J Rydell;Acta Chiropterologica,2010

2. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment;CB Thaxter;Proc Biol Sci,2017

3. Land-Based Wind Market Report: 2023 Edition;R Wiser;United States,2023

4. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks;S Parsons;Journal of Experimental Biology,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3