YOLO-B:An infrared target detection algorithm based on bi-fusion and efficient decoupled

Author:

Hou Yanli,Tang BohuaORCID,Ma Zhen,Wang Juan,Liang Ben,Zhang Yongqiang

Abstract

The YOLO-B infrared target detection algorithm is proposed to address the problems of incomplete extraction of detailed features and missed and wrong detection of infrared targets by YOLOv5s. The algorithm improves the SPPF of YOLOv5s feature extraction network by proposing the CSPPF structure to increase the sensory field of the model. The Bifusion Neck structure is invoked to fuse the shallow location information with deep semantic information to enhance the feature extraction capability of the model. Taking fully into account the different information of concern for classification and localization, the efficient decoupled head is used as the prediction head of this algorithm, which reduces the latency while maintaining the accuracy. WIoUv3 loss is used as a bounding box regression loss function to reduce the harmful gradient generated by low-quality examples and reduce the competitiveness of high-quality anchor frames. Comparative experiments were conducted for each of the four improvement points, and the experimental results showed that each improvement point had the highest detection accuracy in the comparative experiments of the same category. All improvement points are fused in turn and ablation experiments are performed. The YOLO-B algorithm improves 1.9% in accuracy, 7.3% in recall, 3.8% in map_0.5, and 4.6% in map_0.5:0.95 compared to YOLOv5s. When compared with YOLOv7 and YOLOv8s, the proposed algorithm has better performance in terms of the number of parameters and detection accuracy.

Funder

Key Research and Development Program of Hebei Province

Publisher

Public Library of Science (PLoS)

Reference44 articles.

1. A spatial-temporal feature-based detection framework for infrared dim small target;J Du;IEEE Transactions on Geoscience and Remote Sensing,2021

2. Infrared small target detection based on weighted three-layer window local contrast;H Cui;IEEE Geoscience and Remote Sensing Letters,2021

3. Moving dim and small target detection in multiframe infrared sequence with low SCR based on temporal profile similarity;X Liu;IEEE Geoscience and Remote Sensing Letters,2022

4. Spatial-Temporal Tensor Ring Norm Regularization for Infrared Small Target Detection;H Yi;IEEE Geoscience and Remote Sensing Letters,2023

5. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580–587.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3