An empirical comparison of some missing data treatments in PLS-SEM

Author:

Amusa Lateef BabatundeORCID,Hossana Twinomurinzi

Abstract

PLS-SEM is frequently used in applied studies as an excellent tool for examining causal-predictive associations of models for theory development and testing. Missing data are a common problem in empirical analysis, and PLS-SEM is no exception. A comprehensive review of the PLS-SEM literature reveals a high preference for the listwise deletion and mean imputation methods in dealing with missing values. PLS-SEM researchers often disregard strategies for addressing missing data, such as regression imputation and imputation based on the Expectation Maximization (EM) algorithm. In this study, we investigate the utility of these underutilized techniques for dealing with missing values in PLS-SEM and compare them with mean imputation and listwise deletion. Monte Carlo simulations were conducted based on two prominent social science models: the European Customer Satisfaction Index (ECSI) and the Unified Theory of Acceptance and Use of Technology (UTAUT). Our simulation experiments reveal the outperformance of the regression imputation against the other alternatives in the recovery of model parameters and precision of parameter estimates. Hence, regression imputation merit more widespread adoption for treating missing values when analyzing PLS-SEM studies.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3