Study on the failure characteristics of sliding surface and stability analysis of inverted t-type retaining wall in active limit state

Author:

Zeng YongqingORCID,Hu Weidong,Chen Meixin,Zhang Yinghuan,Liu Xiaohong,Zhu Xinnian

Abstract

This paper investigates the sliding surface failure characteristics, earth pressure distribution law and stability safety factor of inverted T-type retaining wall by using the finite element limit analysis software OptumG2, the effects of width of wall heel plate, width of wall toe plate, thickness of bottom plate, soil–wall interface friction angle, soil cohesion and soil internal friction angle of filling on the failure characteristics of sliding surface, the earth pressure distribution law and stability safety factor of retaining walls are analyzed, The stability safety factor of the retaining wall showed a gradually increasing trend as the width of wall heel plate and wall toe plate increased; as the bottom plate thickness increases, the stability safety factor of the retaining wall gradually increases; as the soil-wall interface element reduction coefficient rises, that is, the internal friction angle of the soil-wall gradually increases to the soil internal friction angle, the stability safety factor of the retaining wall gradually increases; as the soil cohesion and internal friction angle increase, the stability safety factor of the retaining wall progressively increases. The safety factor of retaining wall increases by 0.45 for every 0.5m increase in the width of the wall heel plate; the safety factor of the retaining wall increases by 0.29 when the width of the wall toe plate increases by 0.5m; for every 0.5m increase in the width of wall plate thickness, the safety factor of the retaining wall is increased by 0.62; for every 0.25 increase in soil-wall interface element reduction coefficient, the safety factor of the retaining wall increases by 0.29; for every increase of 5KPa in soil cohesion, the safety factor of the retaining wall increased by 1.16; for every 5° increases in soil internal friction angle, the safety factor of retaining wall increases by 0.6. The research is significant for studying the failure laws and stability of retaining walls and providing references for retaining wall design.

Funder

Natural Science Foundation of Hunan Province of China

Key Scientific Program of Hunan Education Department, China

Innovation Project of Hunan Undergraduate Students

Publisher

Public Library of Science (PLoS)

Reference35 articles.

1. Design method of toppling stability of highway retaining wall;G Zeng;Journal of Central South University (Science and Technology),2009

2. Experimental study on characteristics of active slip surface of limited width soil behind rigid wall;C Y Wang;Rock and Soil Mechanics,2021

3. Seismic stability of L-shape retaining walls and determination method of sliding surface;X X Zhang;Rock and Soil Mechanics,2019

4. Stability analysis of an unstable slope in chongqing based on multiple analysis methods;Z Li;Processes,2023

5. Evaluation of the seismic earth pressure for inverted T-shape stiff retaining wall in cohesionless soils via dynamic centrifuge;S B Jo;Soil Dynamics and Earthquake Engineering,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3