Delivering biochemicals with precision using bioelectronic devices enhanced with feedback control

Author:

Marquez Giovanny,Dechiraju Harika,Baniya PrabhatORCID,Li Houpu,Tebyani MaryamORCID,Pansodtee Pattawong,Jafari MohammadORCID,Barbee Alexie,Orozco Jonathan,Teodorescu Mircea,Rolandi Marco,Gomez MarcellaORCID

Abstract

Precision medicine endeavors to personalize treatments, considering individual variations in patient responses based on factors like genetic mutations, age, and diet. Integrating this approach dynamically, bioelectronics equipped with real-time sensing and intelligent actuation present a promising avenue. Devices such as ion pumps hold potential for precise therapeutic drug delivery, a pivotal aspect of effective precision medicine. However, implementing bioelectronic devices in precision medicine encounters formidable challenges. Variability in device performance due to fabrication inconsistencies and operational limitations, including voltage saturation, presents significant hurdles. To address this, closed-loop control with adaptive capabilities and explicit handling of saturation becomes imperative. Our research introduces an enhanced sliding mode controller capable of managing saturation, adept at satisfactory control actions amidst model uncertainties. To evaluate the controller’s effectiveness, we conducted in silico experiments using an extended mathematical model of the proton pump. Subsequently, we compared the performance of our developed controller with classical Proportional Integral Derivative (PID) and machine learning (ML)–based controllers. Furthermore, in vitro experiments assessed the controller’s efficacy using various reference signals for controlled Fluoxetine delivery. These experiments showcased consistent performance across diverse input signals, maintaining the current value near the reference with a relative error of less than 7% in all trials. Our findings underscore the potential of the developed controller to address challenges in bioelectronic device implementation, offering reliable precision in drug delivery strategies within the realm of precision medicine.

Funder

Defense Advanced Research Projects Agency

Publisher

Public Library of Science (PLoS)

Reference37 articles.

1. Towards precision medicine;EA Ashley;Nature Reviews Genetics,2016

2. Targeted drug delivery strategies for precision medicines;MT Manzari;Nature Reviews Materials,2021

3. Soft Bioelectronics for Therapeutics;Z Zhang;ACS nano,2023

4. The role of machine learning in advancing precision medicine with feedback control;K Zlobina;Cell Reports Physical Science,2022

5. Regenerative bioelectronics: A strategic roadmap for precision medicine;AK Panda;Biomaterials,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. More on Pulsed Electric Fields, and More…;Bioelectricity;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3