Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro

Author:

Bie SongtaoORCID,Mo Qiuyue,Shi Chen,Yuan Hui,Li Chunshuang,Wu Tong,Li Wenlong,Yu Heshui

Abstract

Staphylococcus aureus is the main culprit, causing a variety of severe clinical infections. At the same time, clinics are also facing the severe situation of antibiotic resistance. Therefore, effective strategies to address this problem may include expanding the antimicrobial spectrum by exploring alternative sources of drugs or delaying the development of antibiotic resistance through combination therapy so that existing antibiotics can continue to be used. Plumbagin (PLU) is a phytochemical that exhibits antibacterial activity. In the present study, we investigated the in vitro antibacterial activity of PLU. We selected five antibiotics with different mechanisms and inhibitory activities against S. aureus to explore their interaction with the combination of PLU. The interaction of combinations was evaluated by the Bliss independent model and visualized through response surface analysis. PLU exhibited potent antibacterial activity, with half maximal inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values against S. aureus of 1.73 μg/mL and 4 μg/mL, respectively. Synergism was observed when PLU was combined with nitrofurantoin (NIT), ciprofloxacin (CPR), mecillinam (MEC), and chloramphenicol (CHL). The indifference of the trimethoprim (TMP)-PLU pairing was demonstrated across the entire dose-response matrix, but significant synergy was observed within a specific dose region. In addition, no antagonistic interactions were indicated. Overall, PLU is not only a promising antimicrobial agent but also has the potential to enhance the growth-inhibitory activity of some antibiotics against S. aureus, and the use of the interaction landscape, along with the dose-response matrix, for analyzing and quantifying combination results represents an improved approach to comprehending antibacterial combinations.

Funder

Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine

Science and Technology Program of Tianjin

Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3