Deciphering the structure of a multi-drug resistant Acinetobacter baumannii short-chain dehydrogenase reductase

Author:

Shahri Mahdi AbedinzadehORCID,Shirmast PanizORCID,Ghafoori Seyed Mohammad,Forwood Jade KennethORCID

Abstract

The rapidly increasing threat of multi-drug-resistant Acinetobacter baumannii infections globally, encompassing a range of clinical manifestations from skin and soft tissue infections to life-threatening conditions like meningitis and pneumonia, underscores an urgent need for novel therapeutic strategies. These infections, prevalent in both hospital and community settings, present a formidable challenge to the healthcare system due to the bacterium’s widespread nature and dwindling effective treatment options. Against this backdrop, the exploration of bacterial short-chain dehydrogenase reductases (SDRs) emerges as a promising avenue. These enzymes play pivotal roles in various critical bacterial processes, including fatty acid synthesis, homeostasis, metabolism, and contributing to drug resistance mechanisms. In this study, we present the first examination of the X-ray crystallographic structure of an uncharacterized SDR enzyme from A. baumannii. The tertiary structure of this SDR is distinguished by a central parallel β-sheet, consisting of seven strands, which is flanked by eight α-helices. This configuration exhibits structural parallels with other enzymes in the SDR family, underscoring a conserved architectural theme within this enzyme class. Despite the current ambiguity regarding the enzyme’s natural substrate, the importance of many SDR enzymes as targets in anti-bacterial agent design is well-established. Therefore, the detailed structural insights provided in this study open new pathways for the in-silico design of therapeutic agents. By offering a structural blueprint, our findings may provide a platform for future research aimed at developing targeted treatments against this and other multi-drug-resistant infections.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3